BH16.12/MachineLearning

提供:TogoWiki

2016年12月14日 (水) 06:10時点におけるAkinjo (トーク | 投稿記録)による版
移動: 案内, 検索

BH16.12

JSTシソーラス - MeSH - 遺伝子 - 様々な特徴 を学習して、遺伝子と表現型(病気など)のアノテーション(関係)を見つける機械学習 (AI) をつくる

  • 参加者:金城・片山
  • サポート:渡辺・櫛田

参考:Robert's paper

目次

特徴ベクトル

  • JSTシソーラスのRDFから特徴ベクトルを作成
    • ランダムウォークでタームごとの URI 周辺のグラフパターンを学習
    • ターム毎に特徴ベクトルを生成
  • 遺伝子アノテーションの特徴ベクトルを生成
    • UniProtやTogoGenomeのエントリからMeSHを含むリンクを抽出
    • MeSHとJSTのタームの対応を学習

データセット

機械学習

DeepWalk

  1. Robert の前処理プログラム RDFWrapper がうまく動かない。Java のライブラリの問題?→しょうがないので、自前で前処理プログラムを作り、originalのDeepWalkプログラムを使うことにする。
  2. OCaml RDF libraryの都合により、ntriples -> turtleに変換。(rapper を使ったが、文字コードの問題で一部トリプルが省かれるみたい。)
  3. jst-mesh2016.ntとmesh2016.ntをマージしたグラフのデータを作った。ノード数 5,401,382
  4. DeepWalkを走らせてベクトルを作り始めた(2016/12/13 3PMごろ)。→まだ終わらない(17:52) →翌朝には終わっていた。

参考

個人用ツール